Climate Resilient Intercropping Systems for Rainfed Red Soils of Karnataka

M.N. Thimmegowda¹, B.K.Ramachandrappa¹, K. Devaraja¹, M.S. Savitha¹, P.N. Srikanth Babu¹, K.A. Gopinath², G. Ravindra Chary² and Ch. Srinivasa Rao²

¹All India Co-ordinated Research Project for Dryland Agriculture, UAS, GKVK, Bengaluru-560 065, Karnataka ²ICAR-Central Research Institute for Dryland Agriculture, Hyderabad-500 059, Telangana

Email: bkr_agron@yahoo.co.in

ABSTRACT: In rainfed and dry regions of southern Karnataka, sole cropping is not much remunerative in the present scenario of climate change in agriculture to fulfill the diverse demands of consumers and burgeoning population. Hence, studies on intercropping systems were conducted in Alanatha cluster of villages in Ramanagara district and Chikkamaranahalli cluster in Bengaluru Rural district from 2010 to 2014 as a part of Operational Research Project (ORP) and National Innovations in Climate Resilient Agriculture (NICRA). In both the locations, finger millet (*Eleusine coracana* L.) + pigeonpea (*Cajanus cajan* L.) (8:2) with moisture conservation furrow between paired rows of pigeonpea intercropping recorded higher yield and economics as compared to the farmers' practices of growing finger millet with *akkadi* crops. In groundnut (*Arachis hypogaea* L.) based cropping, groundnut+ pigeonpea (8:2) intercropping with moisture conservation furrow between paired rows of southern Karnataka. Under pulse based cropping systems, pigeonpea + cowpea (*Vigna unguiculata* L.) and pigeonpea + field bean (*Phaseolus vulgaris* L.) were remunerative when grown in additive series compared to sole crop of pigeonpea.

Key words: B:C ratio, climate resilience, equivalent yield, intercropping, rain water use efficiency

Introduction

In India, 60% of total cultivated area is managed as rainfed ecosystem, wherein crop production is dependent on rainfall, having no facility for protective or lifesaving irrigation. India ranks first among the rainfed agricultural countries of the world in terms of both extent and value of produce. Rainfed agriculture supports 40% of the national food demands. These areas receive an annual rainfall between 400 mm and 1000 mm, which is unevenly distributed, highly uncertain and erratic. As a result, a significant fall in food production is often noticed. The rainfed agriculture as such is most impacted by climate change (Asha latha et al., 2012). Rainfall behaviour, temperature fluctuation and wind are becoming routine aberrations under rainfed ecosystem because of climate change. Added to this, reduced number of rainy days and increased rainfall intensity resulting in heavy crop losses need serious attention to bring stability of rainfed ecosystems.

Intercropping is an important aspect to combat the crop failure in rainfed agriculture under the situation of climate change and helps in improving productivity and profitability through efficient utilization of natural resources. Intercropping provides insurance against drought, modifies soil environment, improves moisture and radiation use, ensures better weed control, reduces disease and pest incidence and on the whole increases and stabilizes the productivity. Intercropping has been identified as a kind of biological insurance against risks under aberrant rainfall behavior. Crop diversification is also necessary to get higher yield and return besides maintaining soil health apart from other benefits (Siddique *et al.*, 2012). In this regard, study was undertaken to evaluate different cereal, pulse and oilseed based intercropping systems in selected villages of Karnataka.

Materials and Methods

Selection of site

Two demonstration sites covering two districts *viz.*, Bengaluru Rural and Ramanagara from Karnataka state were selected for the study. The steps for selection of villages in different districts include climatic constraints of the area, assessment of natural resources, farming situations, constrains in crop production, climatic vulnerability, yield gaps and opportunities for adaptations to climate change. Action plans to demonstrate appropriate intercropping systems to mitigate the climatic vulnerability preferably drought was implemented in farmers' fields in a participatory research mode involving scientists under Operational Research Project (ORP) and National Innovations in Climate Resilient agriculture (NICRA). The details of villages selected for the purpose of study along with soil types and normal rainfall and climate vulnerabilities are presented in Table 1.

Table 1 : Site characteristics of NICRA and ORP villages

District	NICRA/ ORP village	Soil type	Annual rainfall (mm)	Climate variability
Ramanagara	Alanatha cluster (Alanatha, Mahadevpura, Eregowdanadoddi, Arjunahalli, Arjunahallitandya)	Red sandy clay loam	756.0	Drought
Bengaluru Rural	(Chikkamaranahalli, Chikkamaranahalli colony, Chikkaputtayyanapalya, Mudalapalya and Hosapalya)	Red sandy clay loam	913.8	Drought

The demonstration of improved intercropping systems along with sole crops and *akkadi* cropping were conducted in farmers' fields in the selected districts (Table 2). Farmers in the demonstration villages were selected based on their willingness to engage in participatory research. Before conducting the demonstrations, list of farmers was prepared in group meetings and specific skill training was given to the selected farmers during pre-*kharif*. Selected farmers participated in each and every research intervention from soil sampling to harvest. Timely sowing, maintenance of required spacing and plant population, timely weeding and plant protection were attended as per the instructions of scientists.

Climatic conditions

In Alanatha village cluster of Ramanagara district during 2010, 797.2 mm rainfall was received in 41 rainy days, as against normal rainfall of 756 mm in 48 rainy days which was 5% lower than the normal. During 2011, rainfall pattern was highly erratic and uneven with 882 mm rainfall received in 37 rainy days. About 41% of the rainfall was received during April-May months itself. Non receipt of rainfall in

June and July resulted in delayed sowing of crops. In 2012, rainfall distribution was very poor (494 mm in 23 rainy days), a 35% less than normal. During 2013, 848.4 mm rainfall was received in 58 rainy days which was 12% higher than the normal. Annual rainfall of 653.4 mm was received during 2014 in 32 rainy days which was less than the normal. Overall out of 5 years of studies the rainfall was normal in three years and deficit in two years.

In Chikkamaranahalli village cluster of Nelamangala taluk, the total rainfall received during 2011 was 692 mm in 36 rainy days which was 15% less than the normal. In 2012, 442 mm of rainfall was received in 26 rainy days, as against normal rainfall of 750 mm in 46 rainy days (30% low). During 2013, an amount of 651 mm of rainfall was received in 36 rainy days, accounting for 12% deficit. In 2014, total rainfall received was 949.0 mm in 52 rainy days (more than the normal rainfall). In an assessment of intercropping system, finger millet + pigeonpea (8:2), groundnut + pigeonpea (8:2), groundnut + castor (8:1), pigeonpea + cowpea (1:1) and pigeonpea + field bean (1:1) were demonstrated in participatory mode under ORP and NICRA

 Table 2 : Area and number of farmers under different cropping systems

Cropping system	District	Year	Number of farmers	Area (ha)
		2010	37	16.20
Groundnut + Pigeonpea (8:2)		2011	38	19.65
Finger millet + Pigeonnea	Ramanagara	2012	33	18.40
• • •		2013	40	16.20
		2014	54	26.20
	Dencelan Dencel	2011	59	27.65
	Bengaluru Rural	2014	74	13.50
		2010	9	3.20
Cropping system Finger millet + Pigeonpea (8:2) Groundnut + Pigeonpea (8:2) Pigeonpea + Field bean/		2011	18	8.50
	Ramanagara	2012	10	4.50
		2013	5	4.00
		2014	23	13.40
		2011	8	5.60
	Bengaluru Rural	2012	12	9.20
	C	2014	15	3.80
		2010	4	1.60
Finger millet + Pigeonpea (8:2) Groundnut + Pigeonpea (8:2) Pigeonpea + Field bean/		2011	6	2.40
	Ramanagara	2012	1	0.40
Pigeonpea (8:2) Pigeonpea + Field bean/		2013	2	0.80
		2011	8	2.50
		2012	9	2.56
	Bengaluru Rural	2013	2	1.40
		2014	3	0.80

involving 490 farmers in 211 ha in red soils of Alanatha cluster village of Ramanagara district and Chikkamaranahalli cluster villages in Bengaluru Rural district of Karnataka from 2010 to 2014.

Observations

The yield observations were recorded at harvest of the respective crops. The yields of intercrops were converted into main crop equivalent yields taking into account the actual vields (kg/ha) attained by crops along with the prices (per kg) of the crops. The data were subjected to "t" test analysis for determining its significance between the treatments and to draw valid conclusions. The level of significance used was 5%. The rainwater use efficiency (kg/ha-mm) of a crop or cropping system was determined by considering the crop equivalent yield (kg/ha) attained by the system and crop seasonal rainfall (mm) received from sowing to harvest of a given crop or the long duration crop in the cropping system. It is given as a ratio of the crop equivalent yield to that of crop seasonal rainfall. The cost of cultivation (₹/ha) incurred under different cropping systems was derived by taking into account all the costs involved for different agricultural inputs and operations. The values of different crops in sole and intercropping systems were considered to derive the gross returns (₹/ha). The prices of farm produce in different years are presented in Table 3.

Crop equivalent =	Yield of main	(Yield of inter crop (kg/ha) × Price of inter crop (Rs/kg)	Ì
yield (kg/ha)	crop (kg/ ha)	+	Price of main crop (Rs/kg))

Results and Discussion

Finger millet based intercropping system

Under ORP in five cluster villages of Alanatha in Ramanagara district, intercropping of finger millet + pigeon pea (8:2) recorded higher finger millet grain equivalent yield by 2354, 1946, 1368,1798 and 911 kg/ha than farmer practice of finger millet + *akkadi* cropping system during 2010, 2011, 2012, 2013 and 2014, respectively. On an average, the intercropping system of finger millet + pigeonpea (8:2) recorded significantly higher finger millet grain equivalent yield (3156 kg/ha) and B:C ratio (3.13) as compared to finger millet + *akkadi* (Table 4). Similar observations were also recorded under NICRA in Nelamangala

Table 3	· Price of	agriculture	nroduce	during	the vears	of study
Table 3	. 1 1100 01	agriculture	produce	uuring	the years	UI SLUUY

taluk of Bengaluru Rural district with significantly higher finger millet grain equivalent yield in all the years of study with a mean of 3415 kg/ha and B: C ratio 3.08 (Table 5). The per cent increase in yield was 65. Highest rain water use efficiency (7.24 and 5.77 kg/ha-mm, ORP and NICRA, respectively) was observed with finger millet + pigeonpea intercropping system compared to finger millet + *akkadi*. This was attributed to the better performance of small millets even under drought and erratic rainfall, both as sole crop and intercrop probably due to their drought tolerance (Shashidhara *et al.*, 2000). Adikant Pradhan *et al.* (2014) reported that finger millet intercropping recorded the best yield as compared to the sole in terms of monetary returns.

Groundnut based intercropping system

In Ramanagara district, groundnut + pigeonpea (8:2) and groundnut + castor (8:1) intercropping systems recorded significantly higher mean groundnut equivalent yields (1007 and 820kg/ha, respectively) compared to groundnut + akkadi cropping (Table 6). Though there was high rainfall in the year 2013, drought prevailed during pod filling stage leading to yield reduction. In 2014, dryspell during initial stage of crop lead to synchronized flowering and good rainfall during pod filling stage resulted in higher groundnut yield. Similar results of increased yield were observed in peanut due to early season drought which was due to root growth (Jongrungklang et al., 2011). Also, rain water use efficiency, net returns and B: C ratio were highest (2.18 kg/ha-mm, ₹ 18842/ha and 1.96, respectively) in groundnut + pigeonpea (8:2) compared to other cropping systems. Similarly, in Bengaluru Rural district at NICRA site, higher groundnut pod equivalent yields were recorded (2072, 718 and 1383 kg/ ha during 2011, 2012 and 2014, respectively) with a mean of 1391 kg/ha which was significantly higher compared to groundnut + akkadi cropping system (Table 7). Furthermore, higher rain water use efficiency (2.54 kg/ha-mm), net returns (₹ 18842/ha) and B: C ratio (1.96) was recorded in groundnut + pigeonpea (8:2) intercropping system. In pigeonpea + groundnut intercropping system, the increase in yield might be due to no or low competition between main crop and intercrop for growth, development and for above ground and below ground resources as groundnut crop was of shorter duration and non-spreading nature and further, might be due to complementarity in resource utilization by groundnut crop (Ramesh and Devasenapathy, 2007).

			Price (₹/kg)		
Produce	2010	2011	2012	2013	2014
Finger millet (<i>Eleusine coracana</i> L.)	10.0	11.0	20.0	20.0	25.0
Pigeonpea (Cajanus cajan L.)	35.0	35.0	40.0	43.0	43.0
Groundnut(Arachis hypogaea L.)	28.0	28.0	50.0	50.0	60.0
Field bean (Phaseolus vulgaris L.)	30.0	30.0	30.0	25.0	50.0
Cowpea (Vigna unguiculata L.)	30.0	30.0	30.0	50.0	50.0
Sorghum (Sorghum bicolor L.)	16.0	16.0	16.0	16.0	20.0
Castor (Ricinus communis L.)	22.0	35.0	35.0	40.0	40.0

Thimmegowda et al.

l economics of finger millet ba		

N7	Turnetar	Yield of main <u>crop (kg/ha)</u> Grain Straw		Yield of intercrop (kg/ha)	FM Grain equivalent	RWUE (kg/ha-mm)	Returns (₹/ha)		B:C ratio
years	Treatments			(kg/lla)	yield (kg/ha)	(kg/na-mm)	Gross	Net	1 atio
	Finger millet + pigeonpea	3171	8403	480	4291	10.19	54812	40312	3.78
2010	Finger millet + akkadi	1550	2868	PP-70, Cas-40 Sor -10, FB-50	1937	9.02	22641	12221	1.97
	Finger millet + pigeonpea	2195	5490	334	3257	6.96	39952	24952	2.66
2011	Finger millet + akkadi	1090	2725	PP-37, Cas-15 Sor-7, FB-17	1311	4.87	15827	5327	1.50
	Finger millet + pigeonpea	2270	5040	180	2630	7.62	56380	40820	3.62
2012	Finger millet + akkadi	1190	2490	PP-17, Cas-10 Sor-7, FB-10	1262	6.87	25668	10968	1.75
	Finger millet + pigeonpea	2665	5705	202	3313	6.50	66267	45688	3.22
2013	Finger millet + akkadi	1320	2579	PP-19, Cas-15 Sor-12, FB-14	1515	5.05	30292	14992	1.98
	Finger millet + pigeonpea	1979	4740	180	2289	5.25	60770	35179	2.37
2014	Finger millet + akkadi	1287	2565	PP-17, Cas-12 Sor-8, FB-18	1378	5.19	36370	9704	1.36
	Finger millet + pigeonpea	2456	5876	275	3156	7.24	51636	37390	3.13
Mean	Finger millet + akkadi	1287	2651	PP-25, Cas-18 Sor-9, FB-22	1481	6.10	26160	10642	1.71
t-value	for finger millet grain equiv	valent yie	eld		31.62*				

PP: Pigeonpea; Cas: Castor; Sor: Sorghum; FB: Field bean, FM: Finger millet; RWUE: Rain water use efficiency

Table 5 : Yield and economics of finger millet based intercropping system in *alfisols* of Bengaluru Rural district (Karnataka)

Year	Treatments	0	illet yield /ha)	Intercrop vield	FM Grain equivalent	RWUE (kg/ha-mm)	Net returns (₹/ha)	B:C ratio
		Grain	Straw	(kg/ha)	yield(kg/ha)	()		
2011	Finger millet + pigeonpea	2667	5120	417	3993	6.85	32763	3.18
2011	Finger millet + akkadi	1894	5940	-	1894	3.25	11989	1.90
2014	Finger millet + pigeonpea	2389	4076	260	2836	4.71	47088	2.98
2014	Finger millet + akkadi	2250	3750	-	2250	3.73	35247	2.48
Maan	Finger millet + pigeonpea	2528	4598	339	3415	5.77	34005	3.08
Mean	Finger millet + akkadi	2072	4845	-	2072	3.50	23618	2.19
t-value f	for finger millet grain equival	ent yield			47.89*			

FM: Finger millet; RWUE: Rain water use efficiency

Table 6 : Yield and economics of groundnut based intercropping system in *alfisols* of Ramanagara district (Karnataka)

			Yield (kg/ha)	Groundnut	RWUE	Net returns	B:C
Year	Treatments	Main crop	Intercrop	equivalent yield (kg/ha)	(kg/ha-mm)	(₹/ha)	ratio
	Groundnut + pigeonpea	790	645	1596	3.45	29290	2.72
2010	Groundnut + castor	885	440	1435	3.10	19730	2.20
	Groundnut + akkadi	650	PP-110, Cas-80, Sor-30, FB-60	969	2.09	13550	1.97
	Groundnut + pigeonpea	780	580	1505	3.02	26140	2.49
2011	Groundnut + castor	805	320	1205	2.42	18665	2.12
	Groundnut + akkadi	505	PP-98, Cas-72, Sor-22, FB-55	832	1.67	9860	1.68
	Groundnut + pigeonpea	310	210	478	1.39	7960	1.48
2012	Groundnut + castor	340	32	362	1.05	3955	1.27
	Groundnut + akkadi	275	PP-40, Cas-15, Sor-30, FB-25	344	1.00	1591	1.10
	Groundnut + pigeonpea	325	196	504	0.91	7,907	1.46
2013	Groundnut + castor	363	70	430	0.78	6,216	1.41
	Groundnut + akkadi	218	PP-22, Cas-13, Sor-14, FB-19	257	0.46	-3225	0.99

	Groundnut + pigeonpea	600	492	953	2.14	22,914	1.66
2014	Groundnut + castor	611	84	667	1.50	5796	1.17
	Groundnut + akkadi	570	PP-30, Cas-20, Sor-16, FB-23	629	1.41	2513	1.07
	Groundnut + pigeonpea	561	425	1007	2.18	18842	1.96
Mean	Groundnut + castor	596	189	820	1.78	10872	1.63
	Groundnut + akkadi	444	PP-60, Cas-40, Sor-18, FB-25	440	0.95	4858	1.36
t-value	for groundnut equivalent y	ield		11.79*			

Intercropping in Red Soils

PP: Pigeonpea; Cas: Castor; Sor: Sorghum; FB:Field bean; RWUE: Rain water use efficiency

Year	Treatment	Yield (kg/ha)		Groundnut equivalent	RWUE	Net returns	B:C
rear	Treatment	Main crop	Inter crop	yield (kg/ha)	(kg/ha-mm)	(₹/ha)	ratio
2011	Groundnut + pigeonpea	792	913	2072	3.55	34290	2.95
2011	Groundnut + akkadi	547	-	547	0.94	6416	1.44
2012	Groundnut + pigeonpea	418	375	718	2.14	17950	2.00
2012	Groundnut + akkadi	382	-	382	1.53	1600	1.09
2014	Groundnut + pigeonpea	1192	267	1383	1.92	48219	2.39
2014	Groundnut + akkadi	793	-	793	1.10	13552	1.40
14	Groundnut + pigeonpea	801	518	1391	2.54	33486	2.45
Mean	Groundnut + akkadi	574	-	574	1.05	7189	1.31
	t-value for groundnut	equivalent yield	d	24.73*			

RWUE: Rain water use efficiency

Pigeonpea based intercropping system

In pigeonpea based intercropping, pigeonpea + field bean (1:1) recorded significantly higher pigeonpea equivalent yield (1028 kg/ha) compared to sole cropping of pigeonpea in ORP villages (Table 8). Under NICRA, pigeonpea + cowpea (1:1) and pigeonpea + field bean (1:1) intercropping systems recorded significantly higher mean pigeonpea grain equivalent yields (1223 and 863 kg/ha, respectively) and B: C ratio (2.53 and 2.84, respectively) over sole crop of pigeonpea (Table 8). In

both the locations, pigeonpea + field bean (1:1) cropping system recorded higher rain water use efficiency compared to sole pigeonpea crop. Similar results of higher yields were obtained in pigeonpea + green gram due to better utilization of resources (Sharma Arjun *et al.*, 2004; Subba Reddy *et al.*, 2004. Kathmale *et al.*, 2014) reported that, the legumes as intercrops act as cover crops in wider row spaced pigeonpea resulting in higher *in-situ* moisture conservation and efficient utilization by both the component crops, furthermore helping in increased pigeonpea equivalent yields and RWUE.

TT 1 0 V 1 1 1	• • •	• • • • •	· 10 1 6D	gara district (Karnataka)
Ighle X • Vield gnd	economics of nideonneg	hased infereronning syste	m in <i>alticols</i> of Ramana	laara district (Karnataka)
Table 0 • Field and	computes of pigconpea	Dascu muti ci opping syste	111 111 <i>ut/tsvts</i> vi ixamana	izai a uisti itt (itai iiataka)

N 7		Grain yield (kg/ha)		Pigeonpea equi.	RWUE	Net returns (₹/ha)	B:C ratio
Year	Treatment	Main crop Inter crop		yield (kg/ha)	(kg/ha-mm)		
2010	Pigeonpea + fieldbean	970	460	1365	2.95	39030	4.12
	Pigeonpea	1050	-	1050	2.27	26500	3.15
2011	Pigeonpea + field bean	790	275	1067	2.14	26280	3.08
	Pigeonpea	990	-	990	1.99	24180	2.95
2012	Pigeonpea + field bean	640	220	805	2.33	21,103	2.65
	Pigeonpea	780	-	780	2.26	19,805	2.55
2013	Pigeonpea + field bean	700	226	873	1.98	24,625	2.93
	Pigeonpea	820	-	820	1.86	23,665	2.88
Mean	Pigeonpea + field bean	775	295	1028	2.19	27760	3.20
	Pigeonpea	910	-	910	1.94	23538	2.88
	t-value for pigeonpea equiv	alent yield		10.74*			

RWUE: Rain water use efficiency

Table 9 : Yield and economics of pigeonpea	based intercropping system in al	fisols of Bengaluru Rural district (Karnataka)

• 7		Grain yield (kg/ha)		Pigeonpea equivalent	RWUE	Net returns	B:C
Year	Treatment	Main crop	Inter crop	yield (kg/ha)	(kg/ha-mm)	(₹/ha)	ratio
	Pigeonpea + cowpea	1212	200	1383	2.37	35805	3.84
2011	Pigeonpea + field bean	842	416	1199	2.060	29165	3.27
	Sole pigeonpea	476	-	476	0.817	4260	1.34
2013	Pigeonpea + cowpea	654	516	954	2.12	17566	1.75
	Sole pigeonpea	640	-	640	1.42	6398	1.30
	Pigeonpea + cowpea	750	500	1331	1.79	28428	1.99
2014	Pigeonpea + field bean	850	650	1606	2.15	39978	2.40
	Sole pigeonpea	825	-	825	1.04	8933	1.34
Mean	Pigeonpea + cowpea	872	405	1223	2.09	27266	2.53
	Pigeonpea + field bean	846	533	863	2.10	34572	2.84
	Sole pigeonpea	647	-	647	1.09	6530	1.33
	t-value for pigeonpea	equivalent yiel	d	12.28*			

RWUE: Rain water use efficiency

Conclusion

In an assessment of different intercropping systems in red soils of Ramanagara and Bengaluru Rural districts, finger millet + pigeonpea (8:2), groundnut + pigeonpea (8:2) and pigeonpea + field bean/cowpea (1:1) were found to be economical and climate resilient in dryland situations. Hence, intercropping system offers solution to obtain higher productivity, diversified food products and reduced risk of crop failure under rainfed conditions.

Acknowledgement

The authors acknowledge the ICAR, New Delhi and CRIDA, Hyderabad for providing financial assistance under Operational Research Project, National Innovationist Climate Resilient Agriculture project and UAS, Bengaluru for all logistic support.

References

- Adikant Pradhan, Rajput AS and Thakur A. 2014. Yield and economics of finger millet (*Eleusine coracana L. Gaertn*) intercropping system. Int. J. Curr. Microbiol. Appl. Sci., 3(1): 626-629
- Ashalatha KV, Munisamy, Gopinath and Bhat ARS. 2012. impact of climate change on rainfed agriculture in India: A Case Study of Dharwad. Int. J. Environ. Sci. Dev., 3(4): 368-371.
- Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom GT, Patanothai A. 2011. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crops Res., 120: 262-270.

- Kathmale DK, Dhadge SM, Satpute NR, Patil SV, Ravindra Chary G, Srinivasa Rao Ch, Jadhav JD and Kadam JR. 2014. Evaluation of pigeonpea (*Cajanus cajan L.*) based intercropping systems under semi-arid vertisol in scarcity zone of Maharashtra. Indian J. Dryland Agric. Res. Dev., 29(1): 27-34.
- Ramesh T and Devasenapathy P. 2007. Natural resource management on sustainable productivity of rainfed pigeonpea (*Cajanus cajan L*.). Res. J. Agric. Biol. Sci., 3(3): 124-128.
- Sharma Arjun, Pujari BT, Suhas yelshetty and Dharmaraj PS. 2004. Studies on pigeonpea based intercropping systems with small millets, bajra and green gram under shallow black soils. Karnataka J. Agric. Sci., 17: 544-547
- Shashidhara GB, Basavaraja R and Nadagouda B. 2000. Studies on pigeonpea intercropping systems in small millets under shallow red soils. Karnataka J. Agri. Sci., 13(1): 7-10.
- Siddique KHM, Johansen C, Turner NC, Jeuffroy MH, Hashem A, Sakar D, Gan Y, Alghamdi SS. 2012. Innovations in agronomy for food legumes- A review. Agron. Sustainable Dev., 32: 45-64.
- Subba Reddy G, Maruthi V and Vanaja M. 2004. Effect of soil depth on productivity of mungbean and pigeonpea under rainfed environment, Legume Res., (1): 1-10.

Received: April 2015; Accepted: August 2015